Course Content
Past Papers
About Lesson

Impacts and Collisions

2022 (Sample Paper) Question 5 (a)

A small smooth sphere, \(P\), of mass \(m\), travels along a horizontal surface at a constant speed of \(8\mbox{ m s}^{-1}\). It collides with another small smooth sphere, \(Q\), of mass \(3m\), which is at rest.

The coefficient of restitution between the spheres is \(\dfrac{3}{8}\).

P8 m s-1Q

(i) Calculate the velocity of \(P\) and the velocity of \(Q\) after impact.

(ii) Calculate, in terms of \(m\), the loss in kinetic energy due to the impact. 

Answer

(i) \(\vec{v}_P=-\dfrac{1}{4}\vec{i}\mbox{ m/s}\) and \(\vec{v}_Q=\dfrac{11}{4}\vec{i}\mbox{ m/s}\)

(ii) \(20.625m\)

Solution
Sphere P

\(m_P = m\)

Initial Velocity

\(\vec{u}_P=8\vec{i}\mbox{ m/s}\)

Final Velocity

\(\vec{v}_P=v_P\vec{i}\)

Sphere Q

\(m_Q = 3m\)

Initial Velocity

\(\vec{u}_Q=0 \vec{i}\mbox{ m/s}\)

Final Velocity

\(\vec{v}_Q=v_Q\vec{i}\mbox{ m/s}\)

(i)

Conservation of Momentum

\begin{align}m_Pu_P+m_Qu_Q = m_Pv_P+m_Qv_Q\end{align}

\begin{align}\downarrow\end{align}

\begin{align}m(8)+(3m)(0) = mv_P+(3m)v_Q\end{align}

\begin{align}\downarrow\end{align}

\begin{align}8 = v_P+3v_Q\end{align}

Law of Restitution

\begin{align}e=-\frac{v_P-v_Q}{u_P-u_Q}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}\frac{3}{8}=-\frac{v_P-v_Q}{8-0}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}-3=v_P-v_Q\end{align}

We therefore have the following two equations with two unknowns.

\begin{align}8 = v_P+3v_Q\end{align}

\begin{align}-3=v_P-v_Q\end{align}

\begin{align}\downarrow\end{align}

\begin{align}11=4v_Q\end{align}

\begin{align}\downarrow\end{align}

\begin{align}v_Q=\frac{11}{4}\end{align}

Inserting this into \(-3=v_P-v_Q\) gives:

\begin{align}v_P&=v_Q-3\\&=\frac{11}{4}-3\\&=-\frac{1}{4}\end{align}

Therefore, the velocities of sphere \(P\) and sphere \(Q\) after the collision are \(-\dfrac{1}{4}\vec{i}\mbox{ m/s}\) and \(\dfrac{11}{4}\vec{i}\mbox{ m/s}\) respectively.

(ii)

\begin{align}E_i &= K_{Pi}+K_{Qi}\\&=\frac{1}{2}m_Pu_P^2 + \frac{1}{2}m_Qu_Q^2\\&=\frac{1}{2}(m)(8^2)+ \frac{1}{2}(3m)(0)^2\\&=32m\end{align}

and

\begin{align}E_f &= K_{Pf}+K_{Qf}\\&=\frac{1}{2}m_Pv_P^2 + \frac{1}{2}m_Qv_Q^2\\&=\frac{1}{2}(m)\left(-\frac{1}{4}\right)^2+ \frac{1}{2}(3m)\left(\frac{11}{4}\right)^2\\&=\frac{m}{32}+\frac{363m}{32}\\&=\frac{364m}{32}\end{align}

Therefore, the total energy lost from the system is

\begin{align}E_i-E_f&=32m-\frac{364m}{32}\\&=\frac{660m}{32}\\&=20.625m\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!
Bookmark