25 DAY MATHS
FINAL REVISION COURSES

Course Content
Digital Lessons
About Lesson
MEMBERS ONLY!

This content is exclusively for members.

Exercise Set 1E

These questions are considered beginner to intermediate Ordinary Level.

Question 1

Write the vector \(\vec{a}=\langle 5 \,\, \angle \,\, 15^{\circ}\rangle\) in component form, correct to two decimal places.

Answer

\(\vec{a}=4.83\vec{i} + 1.29\vec{j}\)

Solution
xy

\begin{align}|\vec{a_x}| &= |\vec{a}| \cos A \\&= 5\cos 15^{\circ} \\&\approx 4.83\end{align}

\begin{align}|\vec{a_y}| &= |\vec{a}| \sin A \\&= 5\sin 15^{\circ} \\&\approx 1.29 \end{align}

\begin{align}\downarrow\end{align}

\begin{align}a_x = 4.83 && a_y = 1.29\end{align}

\begin{align}\downarrow\end{align}

\[\vec{a}=4.83\vec{i} + 1.29\vec{j}\]

Walkthrough

We are being asked to convert a vector from polar form into component form and should therefore follow the relevant steps.

Step 1: Draw a labelled diagram of the triangle of decomposed vectors.

xy

Step 2: Use the argument \(\boldsymbol{\theta}\) to find the relevant angle \(\boldsymbol{A}\) in this triangle.

In this case, the angle \(\theta\) given in polar form is the same angle that is within the triangle, i.e. \(A=15^{\circ}\).

\[\,\]

Step 3: Calculate the magnitudes of the decomposed vectors using \(\boldsymbol{|\vec{a_x}| = |\vec{a}|\cos A} \) and \(\boldsymbol{|\vec{a_y}| = |\vec{a}|\sin A} \).

\begin{align}|\vec{a_x}| &= |\vec{a}| \cos A \\&= 5\cos 15^{\circ} \\&\approx 4.83\end{align}

\begin{align}|\vec{a_y}| &= |\vec{a}| \sin A \\&= 5\sin 15^{\circ} \\&\approx 1.29 \end{align}

Step 4: Calculate \(\boldsymbol{a_x}\) and \(\boldsymbol{a_y}\) using \(\boldsymbol{|\vec{a_x}|}\) and \(\boldsymbol{|\vec{a_y}|}\), i.e. be careful with signs!

According to the above diagram, \(\vec{a_x}\) is in the same direction as \(\vec{i}\) and \(a_y\) is in the same direction as \(\vec{j}\). Therefore

\begin{align}a_x = 4.83 && a_y = 1.29\end{align}

\[\,\]

Step 5: Write \(\boldsymbol{\vec{a} =a_x \vec{i} + a_y \vec{j}}\).

\[\vec{a}=4.83\vec{i} + 1.29\vec{j}\]

Question 2

Write the vector \(\vec{a}=\langle 46 \mbox{ km} \,\, \angle \,\, 180^{\circ}\rangle\) in component form.

Answer

\(-46\vec{i}\mbox{ km}\)

Solution

Vector is pointing purely in the negative \(x\) direction \(\rightarrow \vec{a}=-46\vec{i}\mbox{ km}\).

Walkthrough

We could use our usual method to convert this vector from polar form into component form.

However, in this case, we can be a bit smarter!

As the argument is \(180^{\circ}\), this vector is pointing purely in the negative \(x\) direction, i.e. in the opposite direction to \(\vec{i}\).

xy

Therefore, we can immediately write this vector in component form as \(-46\vec{i}\mbox{ km}\)!

Question 3

Write the vector \(\vec{p}=\langle 12\mbox{ m/s} \,\, \angle \,\, 105^{\circ}\rangle\) in component form, correct to two decimal places.

Answer

\(\vec{p}=-3.11\vec{i} + 11.59\vec{j}\mbox{ m/s}\)

Solution
xy

\begin{align}|\vec{p_x}| &= |\vec{p}| \cos A \\&= 12\cos 75^{\circ} \\&\approx 3.11\end{align}

\begin{align}|\vec{p_y}| &= |\vec{p}| \sin A \\&= 12\sin 75^{\circ} \\&\approx 11.59 \end{align}

\begin{align}\downarrow\end{align}

\begin{align}p_x = -3.11 && p_y = 11.59\end{align}

\begin{align}\downarrow\end{align}

\[\vec{p}=-3.11\vec{i} + 11.59\vec{j}\mbox{ m/s}\]

Walkthrough

We are being asked to convert a vector from polar form into component form and should therefore follow the relevant steps.

Step 1: Draw a labelled diagram of the triangle of decomposed vectors.

xy

Step 2: Use the argument \(\boldsymbol{\theta}\) to find the relevant angle \(\boldsymbol{A}\) in this triangle.

In this case, the angle \(A\) in the triangle is related to the argument \(\theta\) as follows:

\begin{align}A &= 180^{\circ}-105^{\circ}\\&=75^{\circ}\end{align}

\[\,\]

Step 3: Calculate the magnitudes of the decomposed vectors using \(\boldsymbol{|\vec{p_x}| = |\vec{p}|\cos A} \) and \(\boldsymbol{|\vec{p_y}| = |\vec{p}|\sin A} \).

\begin{align}|\vec{p_x}| &= |\vec{p}| \cos A \\&= 12\cos 75^{\circ} \\&\approx 3.11\end{align}

\begin{align}|\vec{p_y}| &= |\vec{p}| \sin A \\&= 12\sin 75^{\circ} \\&\approx 11.59 \end{align}

Step 4: Calculate \(\boldsymbol{p_x}\) and \(\boldsymbol{p_y}\) using \(\boldsymbol{|\vec{p_x}|}\) and \(\boldsymbol{|\vec{p_y}|}\), i.e. be careful with signs!

According to the above diagram, \(\vec{p_x}\) is in the opposite direction to \(\vec{i}\) and \(p_y\) is in the same direction as \(\vec{j}\). Therefore

\begin{align}p_x = -3.11 && p_y = 11.59\end{align}

\[\,\]

Step 5: Write \(\boldsymbol{\vec{p} =p_x \vec{i} + p_y \vec{j}}\).

\[\vec{p}=-3.11\vec{i} + 11.59\vec{j}\mbox{ m/s}\]

Question 4

Consider the following vectors, where \(|\vec{a}|=|\vec{b}|=20\mbox{ N}\) and \(\theta = \tan^{-1}\left(\dfrac{4}{3}\right)\).

xyθ

(a) Write each vector in polar form.

(b) Write each vector in component form.

(c) What is \(\vec{a}\cdot\vec{b}\)?

Answer

(a) \(\vec{a}=\langle 20\mbox{ N} \,\, \angle \,\, 90^{\circ}\rangle\) and \(\vec{b}=\langle 20\mbox{ N} \,\, \angle \,\, 53.13^{\circ}\rangle\)

(b) \(\vec{a}=20\vec{j}\mbox{ N}\) and \(\vec{b}=12\vec{i} + 16\vec{j} \mbox{ N}\)

(c) \(320\)

Solution

(a)

\begin{align}\vec{a}=\langle 20\mbox{ N} \,\, \angle \,\, 90^{\circ}\rangle\end{align}

and

\begin{align}\theta &= \tan^{-1} \left(\frac{4}{3}\right)\\&\approx 53.13^{\circ}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}\vec{b}=\langle 20\mbox{ N} \,\, \angle \,\, 53.13^{\circ}\rangle\end{align}

(b)

A43

\begin{align}H &= \sqrt{3^2+4^2} \\&= 5\end{align}

\begin{align}\downarrow\end{align}

\[\begin{align} \cos A &= \frac{\mbox{adjacent}}{\mbox{hypotenuse}}\\& =\frac{3}{5}\end{align}\]

\[\begin{align} \sin A &= \frac{\mbox{opposite}}{\mbox{hypotenuse}}\\& =\frac{4}{5}\end{align}\]

\begin{align}\downarrow\end{align}

\[\begin{align}|\vec{b}_x| &= |\vec{b}| \cos A \\& = 20 \left(\frac{3}{5}\right) \\&= 12\end{align}\]

\[\begin{align}|\vec{b}_y| &= |\vec{b}| \sin A \\&=  20 \left(\frac{4}{5}\right) \\&= 16\end{align}\]

xyθ

\begin{align}b_x = 12 && b_y = 16\end{align}

\begin{align}\downarrow\end{align}

\[\vec{b}=12\vec{i} + 16\vec{j} \mbox{ N}\]

(c)

\begin{align}\vec{a}\cdot\vec{b} &= |\vec{a}||\vec{b}|\cos \alpha \\&=(20)(20)\cos (90^{\circ}-53.13^{\circ})\\&=(20)(20)(0.8)\\&=320\end{align}

Walkthrough

(a) As \(\vec{a}\) is pointing in the positive \(y\) direction, it has an argument of \(90^{\circ}\). As the magnitude of \(\vec{a}\) is \(20\mbox{ N}\), we write \(\vec{a}\) in polar form as follows:

\begin{align}\vec{a}=\langle 20\mbox{ N} \,\, \angle \,\, 90^{\circ}\rangle\end{align}

For \(\vec{b}\), we are already given the argument in the form of an inverse tan. Typically, when writing a vector in polar form, the convention is to instead write the angle in degrees which, according to a calculator, is given by

\begin{align}\theta &= \tan^{-1} \left(\frac{4}{3}\right)\\&\approx 53.13^{\circ}\end{align}

Therefore, as \(\vec{b}\) also has a magnitude of \(20\mbox{ N}\), we write \(\vec{b}\) in polar form as follows:

\begin{align}\vec{b}=\langle 20\mbox{ N} \,\, \angle \,\, 53.13^{\circ}\rangle\end{align}

(b) We are being asked to convert vectors from polar form into component form and should therefore follow the relevant steps.

\(\vec{a}\), however, is pointing in the positive \(y\) direction, i.e. in the same direction as \(\vec{j}\). Therefore, as it has a magnitude of \(20\mbox{ N}\), we can immediately write it in component form as follows:

\begin{align}\vec{a}=20\vec{j}\mbox{ N}\end{align}

As \(\vec{b}\) is instead an arbitrary vector, we must instead use our usual steps.

Step 1: Draw a labelled diagram of the triangle of decomposed vectors.

xyθ

Step 2: Use the argument \(\boldsymbol{\theta}\) to find the relevant angle \(\boldsymbol{A}\) in this triangle.

In this case, the angle \(\theta\) given in polar form is the same angle that is within the triangle, i.e. 

\[A = \tan^{-1} \left(\frac{4}{3}\right)\]

\[\,\]

Step 3: Calculate the magnitudes of the decomposed vectors using \(\boldsymbol{|\vec{b_x}| = |\vec{b}|\cos A} \) and \(\boldsymbol{|\vec{b_y}| = |\vec{b}|\sin A} \).

As we are given the angle in terms of the ratio of sides of a triangle, we must first draw the a triangle which correctly includes this angle \(A\).

A43

Next, we calculate the hypotenuse \(H\) of this triangle using Pythagoras’ Theorem.

\begin{align}H &= \sqrt{3^2+4^2} \\&= 5\end{align}

Now, we can easily find \(\cos A\) and \(\sin A\) by using their definitions.

\[\begin{align} \cos A &= \frac{\mbox{adjacent}}{\mbox{hypotenuse}}\\& =\frac{3}{5}\end{align}\]

\[\begin{align} \sin A &= \frac{\mbox{opposite}}{\mbox{hypotenuse}}\\& =\frac{4}{5}\end{align}\]

Using these, we can directly calculate our components as 

\[\begin{align}|\vec{b}_x| &= |\vec{b}| \cos A \\& = 20 \left(\frac{3}{5}\right) \\&= 12\end{align}\]

\[\begin{align}|\vec{b}_y| &= |\vec{b}| \sin A \\&=  20 \left(\frac{4}{5}\right) \\&= 16\end{align}\]

\[\,\]

Step 4: Calculate \(\boldsymbol{b_x}\) and \(\boldsymbol{b_y}\) using \(\boldsymbol{|\vec{b_x}|}\) and \(\boldsymbol{|\vec{b_y}|}\), i.e. be careful with signs!

According to the above diagram, \(\vec{b_x}\) is in the same direction as \(\vec{i}\) and \(\vec{b_y}\) is in the same direction as \(\vec{j}\). Therefore

\begin{align}b_x = 12 && b_y = 16\end{align}

\[\,\]

Step 5: Write \(\boldsymbol{\vec{b} =b_x \vec{i} + b_y \vec{j}}\).

\[\vec{b}=12\vec{i} + 16\vec{j} \mbox{ N}\]

(c) According to the diagram in the question, the angle between vectors \(\vec{a}\) and \(\vec{b}\) is

\begin{align}\alpha &= 90^{\circ}-\theta\\&\approx 90^{\circ} – 53.13^{\circ}\\&=36.87^{\circ}\end{align}

Therefore, the dot product of these two vectors is given by

\begin{align}\vec{a}\cdot\vec{b} &= |\vec{a}||\vec{b}|\cos \alpha \\&=(20)(20)(\cos 36.87^{\circ})\\&=(20)(20)(0.8)\\&=320\end{align}

Question 5

Write the vector \(\vec{a}=\langle 50\mbox{ N} \,\, \angle \,\, 140^{\circ}\rangle\) in component form, correct to two decimal places.

Answer

\(\vec{a}=-38.30\vec{i} + 32.14\vec{j}\mbox{ N}\)

Solution
xy

\begin{align}|\vec{a_x}| &= |\vec{a}| \cos A \\&= 50\cos 40^{\circ} \\&\approx 38.30\end{align}

\begin{align}|\vec{a_y}| &= |\vec{a}| \sin A \\&= 50\sin 40^{\circ} \\&\approx 32.14 \end{align}

\begin{align}\downarrow\end{align}

\begin{align}a_x = -38.30 && a_y = 32.14\end{align}

\begin{align}\downarrow\end{align}

\[\vec{a}=-38.30\vec{i} + 32.14\vec{j}\mbox{ N}\]

Walkthrough

We are being asked to convert a vector from polar form into component form and should therefore follow the relevant steps.

Step 1: Draw a labelled diagram of the triangle of decomposed vectors.

xy

Step 2: Use the argument \(\boldsymbol{\theta}\) to find the relevant angle \(\boldsymbol{A}\) in this triangle.

In this case, the angle \(A\) in the triangle is related to the argument \(\theta\) as follows:

\begin{align}A &= 180^{\circ}-140^{\circ}\\&=40^{\circ}\end{align}

\[\,\]

Step 3: Calculate the magnitudes of the decomposed vectors using \(\boldsymbol{|\vec{a_x}| = |\vec{a}|\cos A} \) and \(\boldsymbol{|\vec{a_y}| = |\vec{a}|\sin A} \).

\begin{align}|\vec{a_x}| &= |\vec{a}| \cos A \\&= 50\cos 40^{\circ} \\&\approx 38.30\end{align}

\begin{align}|\vec{a_y}| &= |\vec{a}| \sin A \\&= 50\sin 40^{\circ} \\&\approx 32.14 \end{align}

Step 4: Calculate \(\boldsymbol{a_x}\) and \(\boldsymbol{a_y}\) using \(\boldsymbol{|\vec{a_x}|}\) and \(\boldsymbol{|\vec{a_y}|}\), i.e. be careful with signs!

According to the above diagram, \(\vec{a_x}\) is in the opposite direction to \(\vec{i}\) and \(a_y\) is in the same direction as \(\vec{j}\). Therefore

\begin{align}a_x = -38.30 && a_y = 32.14\end{align}

\[\,\]

Step 5: Write \(\boldsymbol{\vec{a} =a_x \vec{i} + a_y \vec{j}}\).

\[\vec{a}=-38.30\vec{i} + 32.14\vec{j}\mbox{ N}\]

Question 6

A vector \(\vec{p}\) has a magnitude of \(13\) units and subtends an angle \(\theta\) relative to the positive \(x\) axis, where \(\theta = \tan^{-1}\left(\displaystyle\frac{5}{12}\right)\).

Write \(\vec{p}\) in component form without using a calculator.

Answer

\(\vec{p}=12\vec{i} + 5\vec{j}\)

Solution
A125

\begin{align}H &= \sqrt{5^2+12^2} \\&= 13\end{align}

\begin{align}\downarrow\end{align}

\[\begin{align} \cos A &= \frac{\mbox{adjacent}}{\mbox{hypotenuse}}\\& =\frac{12}{13}\end{align}\]

\[\begin{align} \sin A &= \frac{\mbox{opposite}}{\mbox{hypotenuse}}\\& =\frac{5}{13}\end{align}\]

\begin{align}\downarrow\end{align}

\[\begin{align}|\vec{p}_x| &= |\vec{p}| \cos A \\& = 13 \left(\frac{12}{13}\right) \\&= 12\end{align}\]

\[\begin{align}|\vec{p}_y| &= |\vec{p}| \sin A \\&=  13 \left(\frac{5}{13}\right) \\&= 5\end{align}\]

xyθ

\begin{align}p_x = 12 && p_y = 5\end{align}

\begin{align}\downarrow\end{align}

\[\vec{p}=12\vec{i} + 5\vec{j}\]

Walkthrough

We are being asked to convert a vector from polar form into component form and should therefore follow the relevant steps.

Step 1: Draw a labelled diagram of the triangle of decomposed vectors.

xyθ

Step 2: Use the argument \(\boldsymbol{\theta}\) to find the relevant angle \(\boldsymbol{A}\) in this triangle.

In this case, the angle \(\theta\) given in polar form is the same angle that is within the triangle, i.e. 

\[A = \tan^{-1} \left(\frac{5}{12}\right)\]

\[\,\]

Step 3: Calculate the magnitudes of the decomposed vectors using \(\boldsymbol{|\vec{p_x}| = |\vec{p}|\cos A} \) and \(\boldsymbol{|\vec{p_y}| = |\vec{p}|\sin A} \).

As we are given the angle in terms of the ratio of sides of a triangle, we must first draw the a triangle which correctly includes this angle \(A\).

A125

Next, we calculate the hypotenuse \(H\) of this triangle using Pythagoras’ Theorem.

\begin{align}H &= \sqrt{5^2+12^2} \\&= 13\end{align}

Now, we can easily find \(\cos A\) and \(\sin A\) by using their definitions.

\[\begin{align} \cos A &= \frac{\mbox{adjacent}}{\mbox{hypotenuse}}\\& =\frac{12}{13}\end{align}\]

\[\begin{align} \sin A &= \frac{\mbox{opposite}}{\mbox{hypotenuse}}\\& =\frac{5}{13}\end{align}\]

Using these, we can directly calculate our components as 

\[\begin{align}|\vec{p}_x| &= |\vec{p}| \cos A \\& = 13 \left(\frac{12}{13}\right) \\&= 12\end{align}\]

\[\begin{align}|\vec{p}_y| &= |\vec{p}| \sin A \\&=  13 \left(\frac{5}{13}\right) \\&= 5\end{align}\]

\[\,\]

Step 4: Calculate \(\boldsymbol{p_x}\) and \(\boldsymbol{p_y}\) using \(\boldsymbol{|\vec{p_x}|}\) and \(\boldsymbol{|\vec{p_y}|}\), i.e. be careful with signs!

According to the above diagram, \(\vec{p_x}\) is in the same direction as \(\vec{i}\) and \(\vec{p_y}\) is in the same direction as \(\vec{j}\). Therefore

\begin{align}p_x = 12 && p_y = 5\end{align}

\[\,\]

Step 5: Write \(\boldsymbol{\vec{p} =p_x \vec{i} + p_y \vec{j}}\).

\[\vec{p}=12\vec{i} + 5\vec{j}\]

Question 7

A vector \(\vec{a}\) has a magnitude of \(20\mbox{ m/s}\) and is at an angle \(\theta\) relative to the negative \(x\) axis, where \(\theta = \tan^{-1}\left(\displaystyle\frac{3}{4}\right)\).

Write \(\vec{a}\) in component form without using a calculator.

Answer

\(\vec{a}=-16\vec{i}-12\vec{j}\mbox{ m/s}\)

Solution
A43

\begin{align}H &= \sqrt{3^2+4^2} \\&= 5\end{align}

\begin{align}\downarrow\end{align}

\[\begin{align} \cos A &= \frac{\mbox{adjacent}}{\mbox{hypotenuse}}\\& =\frac{4}{5}\end{align}\]

\[\begin{align} \sin A &= \frac{\mbox{opposite}}{\mbox{hypotenuse}}\\& =\frac{3}{5}\end{align}\]

\begin{align}\downarrow\end{align}

\[\begin{align}|\vec{a}_x| &= |\vec{a}| \cos A \\& = 20 \left(\frac{4}{5}\right) \\&= 16\end{align}\]

\[\begin{align}|\vec{a}_y| &= |\vec{a}| \sin A \\&=  20 \left(\frac{3}{5}\right) \\&= 12\end{align}\]

xy

\begin{align}a_x = -16 && a_y = -12\end{align}

\begin{align}\downarrow\end{align}

\[\vec{a}=-16\vec{i}-12\vec{j}\mbox{ m/s}\]

Walkthrough

We are being asked to write a vector in component form and should therefore follow the relevant steps.

Step 1: Draw a labelled diagram of the triangle of decomposed vectors.

xy

Step 2: Use the given angle \(\boldsymbol{\theta}\) to find the relevant angle \(\boldsymbol{A}\) in this triangle.

In this case, the angle \(\theta\) that is given is the same angle that is within the triangle, i.e. 

\[A = \tan^{-1} \left(\frac{3}{4}\right)\]

\[\,\]

Step 3: Calculate the magnitudes of the decomposed vectors using \(\boldsymbol{|\vec{a_x}| = |\vec{a}|\cos A} \) and \(\boldsymbol{|\vec{a_y}| = |\vec{a}|\sin A} \).

As we are given the angle in terms of the ratio of sides of a triangle, we must first draw the a triangle which correctly includes this angle \(A\).

A43

Next, we calculate the hypotenuse \(H\) of this triangle using Pythagoras’ Theorem.

\begin{align}H &= \sqrt{3^2+4^2} \\&= 5\end{align}

Now, we can easily find \(\cos A\) and \(\sin A\) by using their definitions.

\[\begin{align} \cos A &= \frac{\mbox{adjacent}}{\mbox{hypotenuse}}\\& =\frac{4}{5}\end{align}\]

\[\begin{align} \sin A &= \frac{\mbox{opposite}}{\mbox{hypotenuse}}\\& =\frac{3}{5}\end{align}\]

Using these, we can directly calculate our components as 

\[\begin{align}|\vec{a}_x| &= |\vec{a}| \cos A \\& = 20 \left(\frac{4}{5}\right) \\&= 16\end{align}\]

\[\begin{align}|\vec{a}_y| &= |\vec{a}| \sin A \\&=  20 \left(\frac{3}{5}\right) \\&= 12\end{align}\]

\[\,\]

Step 4: Calculate \(\boldsymbol{a_x}\) and \(\boldsymbol{a_y}\) using \(\boldsymbol{|\vec{a_x}|}\) and \(\boldsymbol{|\vec{a_y}|}\), i.e. be careful with signs!

According to the above diagram, \(\vec{a_x}\) is in the opposite direction to \(\vec{i}\) and \(\vec{a_y}\) is in the opposite direction to \(\vec{j}\). Therefore

\begin{align}a_x = -16 && a_y = -12\end{align}

\[\,\]

Step 5: Write \(\boldsymbol{\vec{a} =a_x \vec{i} + a_y \vec{j}}\).

\[\vec{a}=-16\vec{i}-12\vec{j}\mbox{ m/s}\]

Question 8

Consider the following vectors, where \(\theta = \tan^{-1}\left(\dfrac{12}{5}\right)\), \(\alpha = 40^\circ\) and the magnitudes of \(\vec{a}\) and \(\vec{b}\) are \(10\mbox{ m/s}\) and \(15\mbox{ m/s}\) respectively.

xyθα

(a) Write each vector in polar form.

(b) Write each vector in component form.

(c) What is \(\vec{a}\cdot\vec{b}\)?

Answer

(a) \(\vec{a}=\langle 10\mbox{ m/s} \,\, \angle \,\, 140^{\circ}\rangle\) and \(\vec{b}=\langle 15\mbox{ m/s} \,\, \angle \,\, 67.38^{\circ}\rangle\)

(b) \(\vec{a}=-7.66\vec{i} + 6.43\vec{j} \mbox{ m/s}\) and \(\vec{b}=5.77\vec{i} + 13.85\vec{j} \mbox{ N}\)

(c) \(44.81\)

Solution

(a)

\begin{align}\beta &= 180^{\circ}-\alpha \\&= 180^{\circ}-40^{\circ}\\&=140^{\circ} \end{align}

\begin{align}\downarrow\end{align}

\begin{align}\vec{a}=\langle 10\mbox{ m/s} \,\, \angle \,\, 140^{\circ}\rangle\end{align}

and

\begin{align}\theta &= \tan^{-1} \left(\frac{12}{5}\right)\\&\approx 67.38^{\circ}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}\vec{b}=\langle 15\mbox{ m/s} \,\, \angle \,\, 67.38^{\circ}\rangle\end{align}

(b)

\(\mathbf{\vec{a}}\):

\[\begin{align}|\vec{a}_x| &= |\vec{a}| \cos A \\& = 10\cos(40^{\circ}) \\&\approx 7.66\end{align}\]

\[\begin{align}|\vec{a}_y| &= |\vec{a}| \sin A \\& = 10\sin(40^{\circ}) \\&\approx 6.43\end{align}\]

xyθα

\begin{align}a_x = -7.66 && a_y = 6.43\end{align}

\begin{align}\downarrow\end{align}

\[\vec{a}=-7.66\vec{i} + 6.43\vec{j} \mbox{ m/s}\]

\[\,\]

\(\mathbf{\vec{b}}\):

A125

\begin{align}H &= \sqrt{12^2+5^2} \\&= 13\end{align}

\begin{align}\downarrow\end{align}

\[\begin{align} \cos A &= \frac{\mbox{adjacent}}{\mbox{hypotenuse}}\\& =\frac{5}{13}\end{align}\]

\[\begin{align} \sin A &= \frac{\mbox{opposite}}{\mbox{hypotenuse}}\\& =\frac{12}{13}\end{align}\]

\begin{align}\downarrow\end{align}

\[\begin{align}|\vec{b}_x| &= |\vec{b}| \cos A \\& = 15 \left(\frac{5}{13}\right) \\&\approx 5.77\end{align}\]

\[\begin{align}|\vec{b}_y| &= |\vec{b}| \sin A \\&=  15 \left(\frac{12}{13}\right) \\&\approx 13.85\end{align}\]

xyθα

\begin{align}b_x = 5.77 && b_y = 13.85\end{align}

\begin{align}\downarrow\end{align}

\[\vec{b}=5.77\vec{i} + 13.85\vec{j} \mbox{ N}\]

(c)

\begin{align}\vec{a}\cdot\vec{b} &= |\vec{a}||\vec{b}|\cos \alpha \\&=(10)(15)\cos (180^{\circ}-40^{\circ}-67.38^{\circ}\\&\approx44.81\end{align}

Walkthrough

(a) The argument of a vector is defined as the angle subtended counter clockwise from the positive \(x\) axis to that vector.

For \(\vec{a}\), according to the diagram, the argument \(\beta\) is

\begin{align}\beta &= 180^{\circ}-\alpha \\&= 180^{\circ}-40^{\circ}\\&=140^{\circ} \end{align}

(We have used \(\beta\) to represent the argument as \(\theta\) is already used in the diagram.)

Therefore, as the magnitude of \(\vec{a}\) is \(10\mbox{ m/s}\), we write \(\vec{a}\) in polar form as follows:

\begin{align}\vec{a}=\langle 10\mbox{ m/s} \,\, \angle \,\, 140^{\circ}\rangle\end{align}

For \(\vec{b}\), we are already given the argument in the form of an inverse tan. Typically, when writing a vector in polar form, the convention is to instead write the angle in degrees which, according to a calculator, is given by

\begin{align}\theta &= \tan^{-1} \left(\frac{12}{5}\right)\\&\approx 67.38^{\circ}\end{align}

Therefore, as \(\vec{b}\) has a magnitude of \(15\mbox{ m/s}\), we write \(\vec{b}\) in polar form as follows:

\begin{align}\vec{b}=\langle 15\mbox{ m/s} \,\, \angle \,\, 67.38^{\circ}\rangle\end{align}

(b) We are being asked to convert vectors from polar form into component form and should therefore follow the relevant steps.

First, we will apply our usual method to \(\vec{a}\).

Step 1: Draw a labelled diagram of the triangle of decomposed vectors.

xyθα

Step 2: Use the given angle to find the relevant angle \(\boldsymbol{A}\) in this triangle.

In this case, the angle \(\alpha\) is the same angle that is within the triangle, i.e. 

\[A = 40^{\circ}\]

\[\,\]

Step 3: Calculate the magnitudes of the decomposed vectors using \(\boldsymbol{|\vec{a_x}| = |\vec{a}|\cos A} \) and \(\boldsymbol{|\vec{a_y}| = |\vec{a}|\sin A} \)

\[\begin{align}|\vec{a}_x| &= |\vec{a}| \cos A \\& = 10\cos(40^{\circ}) \\&\approx 7.66\end{align}\]

\[\begin{align}|\vec{a}_y| &= |\vec{a}| \sin A \\& = 10\sin(40^{\circ}) \\&\approx 6.43\end{align}\]

\[\,\]

Step 4: Calculate \(\boldsymbol{a_x}\) and \(\boldsymbol{a_y}\) using \(\boldsymbol{|\vec{a_x}|}\) and \(\boldsymbol{|\vec{a_y}|}\), i.e. be careful with signs!

According to the above diagram, \(\vec{a_x}\) is in the opposite direction to \(\vec{i}\) and \(\vec{a_y}\) is in the same direction as \(\vec{j}\). Therefore

\begin{align}a_x = -7.66 && a_y = 6.43\end{align}

\[\,\]

Step 5: Write \(\boldsymbol{\vec{a} =a_x \vec{i} + a_y \vec{j}}\).

\[\vec{a}=-7.66\vec{i} + 6.43\vec{j} \mbox{ m/s}\]

Next, we shall apply the same method to \(\vec{b}\).

Step 1: Draw a labelled diagram of the triangle of decomposed vectors.

xyθα

Step 2: Use the given angle to find the relevant angle \(\boldsymbol{A}\) in this triangle.

In this case, the angle \(\theta\) is the same angle that is within the triangle, i.e. 

\[A = \tan^{-1} \left(\frac{12}{5}\right)\]

\[\,\]

Step 3: Calculate the magnitudes of the decomposed vectors using \(\boldsymbol{|\vec{b_x}| = |\vec{b}|\cos A} \) and \(\boldsymbol{|\vec{b_y}| = |\vec{b}|\sin A} \).

As we are given the angle in terms of the ratio of sides of a triangle, we must first draw the a triangle which correctly includes this angle \(A\).

A125

Next, we calculate the hypotenuse \(H\) of this triangle using Pythagoras’ Theorem.

\begin{align}H &= \sqrt{12^2+5^2} \\&= 13\end{align}

Now, we can easily find \(\cos A\) and \(\sin A\) by using their definitions.

\[\begin{align} \cos A &= \frac{\mbox{adjacent}}{\mbox{hypotenuse}}\\& =\frac{5}{13}\end{align}\]

\[\begin{align} \sin A &= \frac{\mbox{opposite}}{\mbox{hypotenuse}}\\& =\frac{12}{13}\end{align}\]

Using these, we can directly calculate our components as 

\[\begin{align}|\vec{b}_x| &= |\vec{b}| \cos A \\& = 15 \left(\frac{5}{13}\right) \\&\approx 5.77\end{align}\]

\[\begin{align}|\vec{b}_y| &= |\vec{b}| \sin A \\&=  15 \left(\frac{12}{13}\right) \\&\approx 13.85\end{align}\]

\[\,\]

Step 4: Calculate \(\boldsymbol{b_x}\) and \(\boldsymbol{b_y}\) using \(\boldsymbol{|\vec{b_x}|}\) and \(\boldsymbol{|\vec{b_y}|}\), i.e. be careful with signs!

According to the above diagram, \(\vec{b_x}\) is in the same direction as \(\vec{i}\) and \(\vec{b_y}\) is in the same direction as \(\vec{j}\). Therefore

\begin{align}b_x = 5.77 && b_y = 13.85\end{align}

\[\,\]

Step 5: Write \(\boldsymbol{\vec{b} =b_x \vec{i} + b_y \vec{j}}\).

\[\vec{b}=5.77\vec{i} + 13.85\vec{j} \mbox{ N}\]

(c) According to the diagram in the question, the angle between vectors \(\vec{a}\) and \(\vec{b}\) is

\begin{align}\alpha &= 180^{\circ}-\alpha-\theta\\&\approx 180^{\circ} -40^{\circ}-67.38^{\circ}\\&=72.62^{\circ}\end{align}

Therefore, the dot product of these two vectors is given by

\begin{align}\vec{a}\cdot\vec{b} &= |\vec{a}||\vec{b}|\cos \alpha \\&=(10)(15)(\cos 72.62^{\circ})\\&\approx44.81\end{align}

Question 9

If \(\vec{m}=\displaystyle\frac{1}{2}\vec{i}-k\vec{j}\) is a unit vector, find two possible values of \(k\).

Answer

\(k=\pm \sqrt{\dfrac{3}{4}}\)

Solution

\begin{align}|\vec{m}|& =\sqrt{\left(\frac{1}{2}\right)^2+k^2}\end{align}

\begin{align}\downarrow\end{align}

\[\sqrt{\frac{1}{4}+k^2}=1\]

\begin{align}\downarrow\end{align}

\[\frac{1}{4}+k^2=1\]

\begin{align}\downarrow\end{align}

\[k=\pm \sqrt{\frac{3}{4}}\]

Walkthrough

As \(\vec{m}\) is a unit vector, it must have a magnitude of \(1\). Its magnitude is given by 

\begin{align}|\vec{m}|& =\sqrt{\left(\frac{1}{2}\right)^2+k^2}\end{align}

Setting this to \(1\) gives

\[\sqrt{\frac{1}{4}+k^2}=1\]

\begin{align}\downarrow\end{align}

\[\frac{1}{4}+k^2=1\]

\begin{align}\downarrow\end{align}

\[k=\pm \sqrt{\frac{3}{4}}\]

Question 10

Find the dot product of the vectors \(\vec{p}=\langle 2 \,\, \angle \,\, 90^{\circ}\rangle\) and \(\vec{q}=\langle 3 \,\, \angle \,\, 30^{\circ}\rangle\):

(a) without converting the vectors into component form

(b) using the vectors in component form

Answer

(a) \(3\)

(b) \(3\)

Solution

(a)

\begin{align}\vec{p} \cdot \vec{q} & = |\vec{p}| |\vec{q}| \cos \theta \\&= (2)(3) \cos (90^\circ-30^{\circ})\\&= 3\end{align}

(b)

\[\vec{p} = 2\vec{j}\]

xy

\begin{align}|\vec{q_x}| &= |\vec{q}| \cos A \\&= 3\cos 30^{\circ} \\&\approx 2.60\end{align}

\begin{align}|\vec{q_y}| &= |\vec{q}| \sin A \\&= 3\sin 30^{\circ} \\&=1.5 \end{align}

\begin{align}\downarrow\end{align}

\begin{align}q_x = 2.60 && q_y = 1.5\end{align}

\begin{align}\downarrow\end{align}

\[\vec{q}=2.60\vec{i} + 1.5\vec{j}\]

\[\,\]

\begin{align}\vec{p} \cdot \vec{q} &= p_xq_x + p_yq_y\\&=(0)(2.60)+(2)(1.5)\\&=3\end{align}

Walkthrough

(a) \(\vec{p}\) has a magnitude of \(2\) units and is at angle of \(90^{\circ}\) relative to the positive \(x\) axis.

\(\vec{q}\) has a magnitude of \(3\) units and is at angle of \(30^{\circ}\) relative to the positive \(x\) axis.

The angle \(\theta\) between the vectors is therefore:

\begin{align}\theta &= 90^{\circ}-30^{\circ} \\&= 60^{\circ}\end{align}

Hence, their dot product is:

\begin{align}\vec{p} \cdot \vec{q} & = |\vec{p}| |\vec{q}| \cos \theta \\&= (2)(3) \cos 60^{\circ}\\&= 3\end{align}

(b) Let us now convert both \(\vec{p}\) and \(\vec{q}\) into component vectors.

For \(\vec{p}\), while we could certainly use our usual steps, we can be smarter and write it down in component form much quicker!

\(\vec{p}\) is at an angle of \(90^{\circ}\) relative to the positive \(x\) axis. Hence, it points along the positive \(y\) axis, i.e. in the same direction as \(\vec{j}\). Therefore, as it has a magnitude of \(2\), we can immediately write \(\vec{p}\) in component form as

\[\vec{p} = 2\vec{j}\]

Next, let us decompose \(\vec{q}\) by following the relevant steps.

Step 1: Draw a labelled diagram of the triangle of decomposed vectors.

xy

Step 2: Use the argument \(\boldsymbol{\theta}\) to find the relevant angle \(\boldsymbol{A}\) in this triangle.

In this case, the angle \(\theta\) given in polar form is the same angle that is within the triangle, i.e. \(A=30^{\circ}\).

\[\,\]

Step 3: Calculate the magnitudes of the decomposed vectors using \(\boldsymbol{|\vec{q_x}| = |\vec{q}|\cos A} \) and \(\boldsymbol{|\vec{q_y}| = |\vec{q}|\sin A} \).

\begin{align}|\vec{q_x}| &= |\vec{q}| \cos A \\&= 3\cos 30^{\circ} \\&\approx 2.60\end{align}

\begin{align}|\vec{q_y}| &= |\vec{q}| \sin A \\&= 3\sin 30^{\circ} \\&=1.5 \end{align}

\[\,\]

Step 4: Calculate \(\boldsymbol{q_x}\) and \(\boldsymbol{q_y}\) using \(\boldsymbol{|\vec{q_x}|}\) and \(\boldsymbol{|\vec{q_y}|}\), i.e. be careful with signs!

According to the above diagram, \(\vec{q_x}\) is in the same direction as \(\vec{i}\) and \(\vec{q_y}\) is in the same direction as \(\vec{j}\). Therefore

\begin{align}q_x = 2.60 && q_y = 1.5\end{align}

\[\,\]

Step 5: Write \(\boldsymbol{\vec{q} =q_x \vec{i} + q_y \vec{j}}\).

\[\vec{q}=2.60\vec{i} + 1.5\vec{j}\]

The dot product of these two vectors in component form is therefore

\begin{align}\vec{p} \cdot \vec{q} &= p_xq_x + p_yq_y\\&=(0)(2.60)+(2)(1.5)\\&=3\end{align}

As expected, we get the same value for the dot product independent of the method used.

Bookmark